

Lactose hydrolysis and protein fortification pose an increased risk for the formation of Maillard reaction products in UHT treated milk products

Aytül Hamzalıoğlu¹, İşıl Gürsul Aktağ², Vural Gökmen¹

¹Food Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, Beytepe, Ankara, Turkiye ²Department of Gastronomy and Culinary Arts, Munzur University, Aktuluk, Tunceli, Turkiye

HACETTEPE UNIVERSITY

Food Quality and Safety (FoQuS)

Research Group

Background

Milk;

- Most important food for daily diet; balanced protein, carbohydrate, lipid and mineral content
- Dairy consumption during years changing

o whole milks

- o semi-skimmed milks
- o skimmed milks
- o flavored milks
- low-lactose milks
- o lactose-free milks
- o protein fortified milks
- o follow-on milks

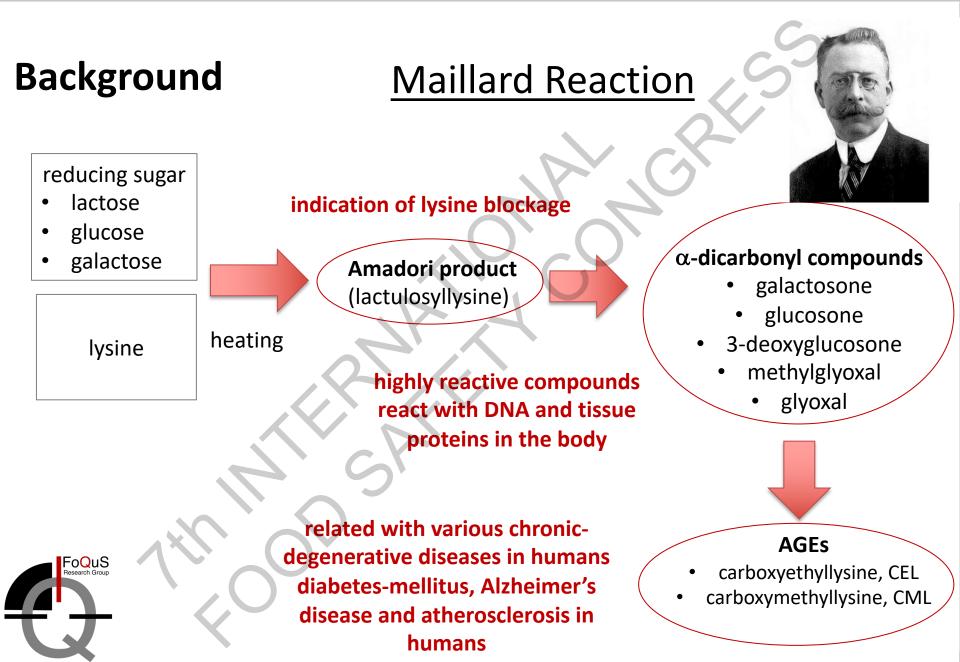
Background

UHT processing-Maillard reaction

✓ increase the shelf-life; UHT processing (130-150°C)

inactivation of bacteria and enzymes, > 6 months

FoQuS



- color & taste
- nutritional loss
- formation of possible harmful compounds

Objective

- Lactose hydrolysis (yields 2 fold reactive reducing sugar)
- Protein fortification
- Follow-on milks (higher sugar content, fortification with honey or syrups)

- does compositional differences affect the MR products in UHT milks aiming to see in different UHT milks
 - content of dicarbonyl compounds
 - o content of AGEs
 - lysine blockage

Experimental

different UHT milks collected from local market

Analysis by Triple Quadrupole LC-MS/MS

hacettepe.edu.tr

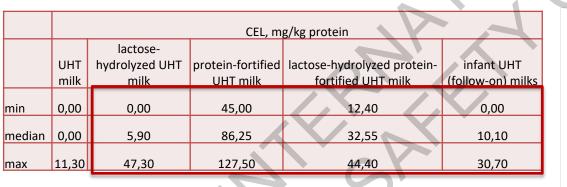
Results

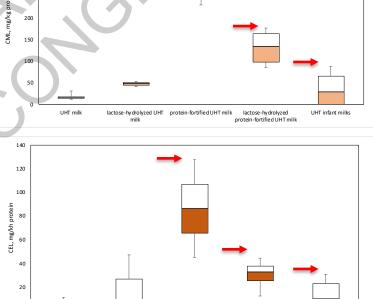
FoQuS

Dicarbonyl compounds

- ✓ 3-DG and 3-Dgal; the dominant dicarbonyl compounds in all milks
- \checkmark Lactose-hydrolyzed milks; highest amounts of α -dicarbonyl compounds
- ✓ infant follow-on milks; great variation in 3-DG (3-DG content of sugar syrup or honey)

dicarbonyl compounds (mg/L)	UHT milk		Lactose-hydrolyzed UHT milk		Protein fortified UHT milk		Lactose-hydrolyzed protein fortified UHT milk		Infant UHT milk (follow-on)	
	Range	Median	Range	Median	Range	Median	Range	Median	Range	Median
3-Deoxyglucosone	0.22-0.40	0.36	3.12-12.67	9.06	0.45-1.61	1.03	13.45-21.98	17.29	4.59-40.38	7.42
3-Deoxygalactosone	0.17-0.43	0.36	4.00-17.51	13.66	0.26-1.84	1.05	12.22-22.71	17.58	0.45-2.69	0.55
1- Deoxyglucosone	0.10-0.82	0.37	0.06-1.78	0.95	0.30-0.47	0.39	0.01-0.97	0.26	n.d0.31	0.01
Glucosone	0.01-0.03	0.01	0.83-2.02	1.76	0.11-0.12	0.11	0.97-4.12	3.13	n.d6.66	6.16
Galactosone	0.01-0.04	0.02	0.94-2.52	2.52	0.08-0.18	0.13	0.85-7.65	3.37	n.d0.13	0.06
Diacetyl	0.01-0.06	0.04	0.03-0.05	0.05	0.07-0.18	0.12	0.03-0.12	0.08	n.d0.25	0.06
Methylglyoxal	n.d0.07	0.02	0.10-0.16	0.11	n.d.	0.00	0.03-0.95	0.20	n.d1.20	0.61
Glyoxal	0.30-0.85	0.50	0.60-0.89	0.63	0.61-0.78	0.69	0.72-5.38	1.65	0.88-1.90	1.42


o *n.d: not detectable



Results

AGEs

	CML, mg/kg protein							
	UHT milk	lactose- hydrolyzed UHT milk	protein-fortified UHT milk	lactose-hydrolyzed protein- fortified UHT milk	infant UHT (follow-on) milks			
min	11,80	41,40	230,60	86,00	0,00			
median	15,24	48,10	301,40	134,50	29,15			
max	31,06	53,80	372,20	177,20	88,20			

lactose-hydrolyzed UHT protein-fortified UHT milk

milk

lactose-hydrolyzed

protein-fortified UHT milk

UHT infant milks

- CML and CEL formation;
- ✓ higher in the milks other than whole UHT milk

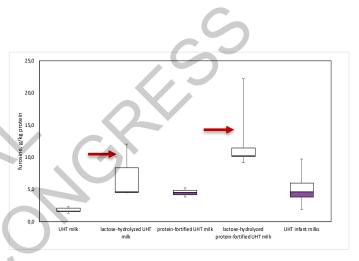
max in protein fortified milk samples FoQuS Research Group

protein fortified milks > lactose hydrolyzed protein fortified milks > infant follow-on milks

400 350 300

200

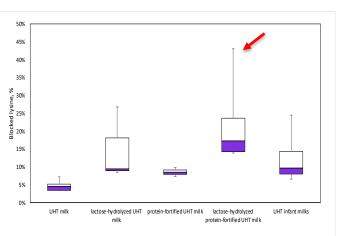
UHT milk


Results

Furosine & Lysine loss

	FUR g/kg protein								
	UHT	lact	ose-hydrolyzed	protein-fortified	lactose	-hydrolyzed pr	otein-	infant UHT	
	milk		UHT milk	UHT milk	fo	ortified UHT milk		(follow-on) milks	Þ
min	1,32		4,47	3,85		9,20		1,92	
median	1,61		4,66	4,55		10,26		4,63	
max	2,34		12,08	5,25		22,20		9,74	

✓ furosine levels; higher in lactose-hydrolyzed milks


	blocked lysine, %								
	UHT	lactose-hydrolyzed	protein-fortified	lactose-hydrolyzed	infant UHT				
	milk	UHT milk	UHT milk	protein-fortified UHT milk	(follow-on) milks				
min	3,4%	8,5%	7,4%	13,9%	6,6%				
median	4,6%	9,6%	8,6%	17,3%	9,8%				
max	7,2%	26,8%	9,8%	43,0%	24,5%				

double reducing sugar conc

Ο

- galactose, glucose more reactive than lactose
- more lysine provided for MR by protein enrichment

lysine loss is as high as 43.0% for lactose-hydrolyzed protein-fortified milks hydrolysis of lactose and protein fortification; higher loss of lysine

to conclude...

- Formation of intermediates, early and advanced Maillard reaction products in UHT affected by the fortification of different ingredients.
 - Fortification of infant follow-on milks with syrup or honey; higher amounts of dicarbonyl compounds
 - Protein fortification and lactose hydrolysis; higher levels of Maillard reaction products
 - Fortification of milks with proteins; loss of available lysine
- Limit the loss of available lysine
 Mitigation of MR in these products
 - \checkmark proper ingredient selection
 - ✓ gentle techniques other than UHT
 - \checkmark lactose removal instead of lactose hydrolysis

Thank you for your attention

aytulhamzalioglu@hacettepe.edu.tr

Journal of Food Composition and Analysis 84 (2019) 103308

Contents lists available at ScienceDirect

Journal of Food Composition and Analysis

journal homepage: www.elsevier.com/locate/jfca

Original Research Article

Lactose hydrolysis and protein fortification pose an increased risk for the formation of Maillard reaction products in UHT treated milk products

Işıl Gürsul Aktağ^{a,b}, Aytül Hamzalıoğlu^a, Vural Gökmen^{a,*}

