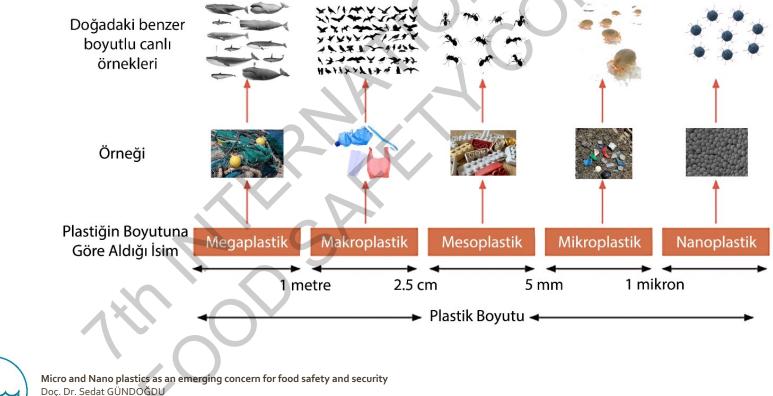


INUN



Plastic Pollution

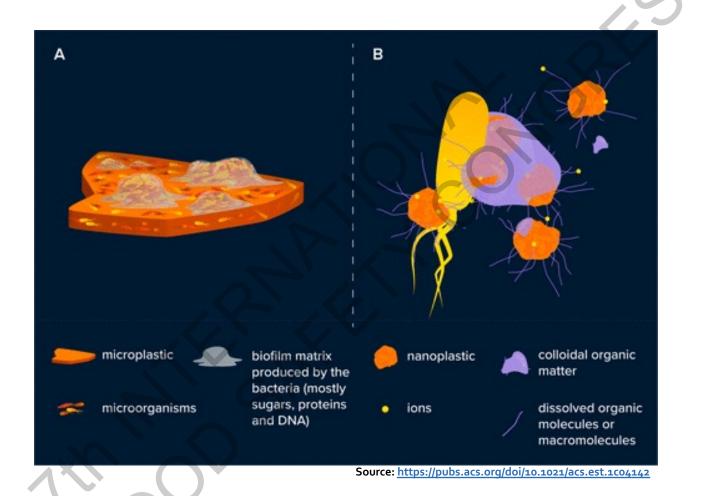
Plastic pollution whic is resulted by massive production (400 million tonnes per year) is an important environmental and social problem. As this issue causes growing concern among citizens, it also causes scientists to increase their efforts to study this new type of pollution.

We now understand from the studies that plastic particles is in various sizes and inorganic molecules and microorganisms can be accumulated on them. It is now a fact that plastic can be found in macro, micro and nano sizes in size!

C.Ü. Su Ürünleri Fakültesi

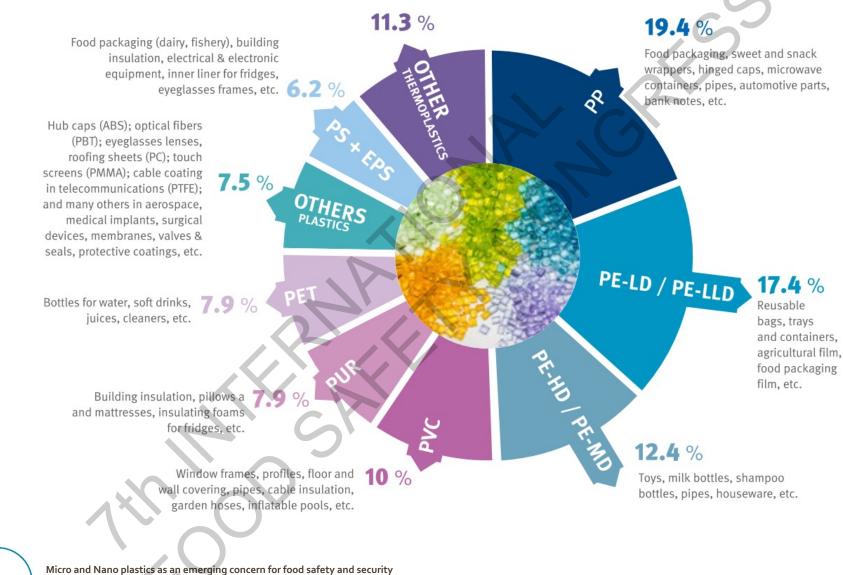
Microplastics

Plastics can be break down to the tiny particles. The particles that are smaller than 5 mm are called microplastics (Secondary microplastics). Microplastics are also produced directly as an abrasive for use in various cleaning materials and personal care products (Primary Microplastics).

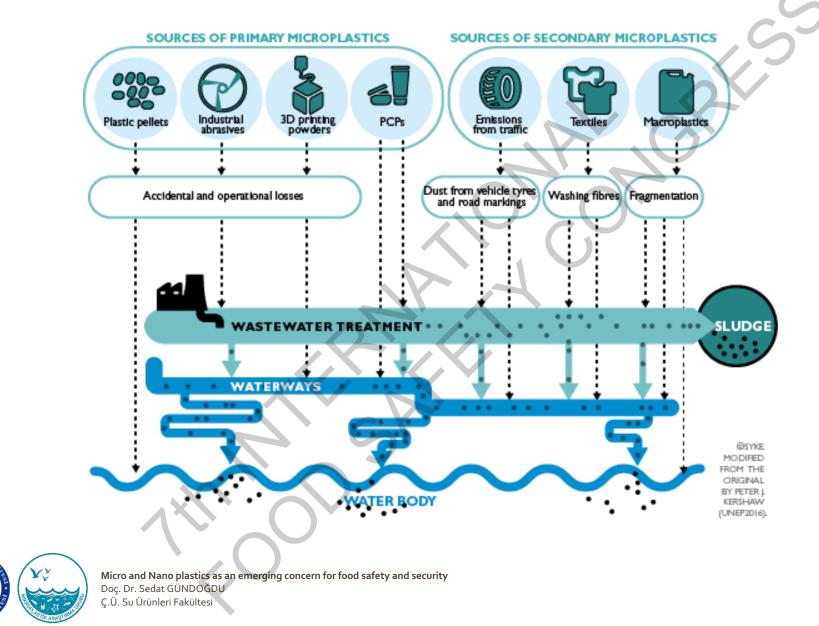


Nanoplastics

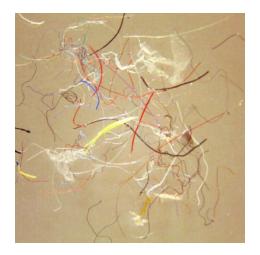
The particles in size between 1 nm and $1 \mu \text{m}$ are called as nanoplastics



Micro and Nano plastics as an emerging concern for food safety and security Doc. Dr. Sedat GÜNDOĞDU


Ç.Ü. Su Ürünleri Fakültesi

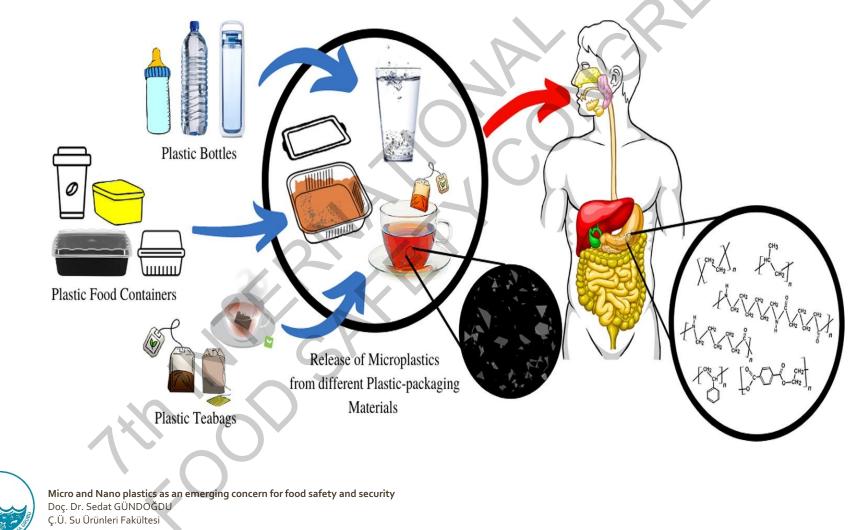
How Micro ve Nano-Plastics (MNPs) Generates?



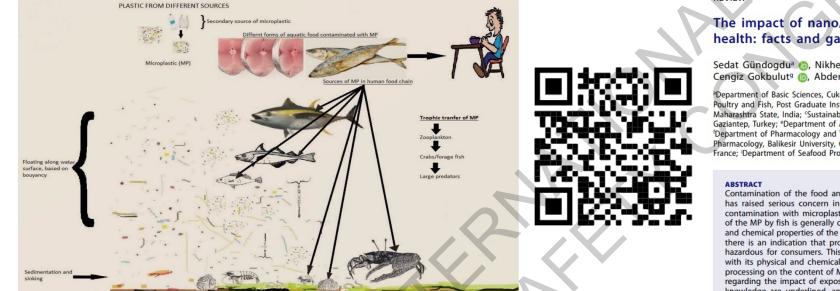
Transportation of Micro ve Nano-Plastics (MNPs) in the Environment?

How Micro ve Nano-Plastics (MNPs) Generates?

A regular washing (6-8 kg) can release more than 1 million plastic particles to the waste water system



Micro and Nano plastics as an emerging concern for food safety and security


Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi

How Micro ve Nano-Plastics (MNPs) Generates?

Food contact materials are materials intended to come into contact with food at any level of the food chain, including processing, preparation, storage and serving. Therefore, they can be the source of various physical, chemical and biological hazards. One of them is MNPs.

MNPs in Foods

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2022.2033684

REVIEW

Taylor & Francis Taylor & Francis Group

Check for updat

The impact of nano/micro-plastics toxicity on seafood quality and human health: facts and gaps

Sedat Gündogdu^a (b), Nikheel Rathod^b (b), Abdo Hassoun^{c,d} (b), Ewelina Jamroz^e (b), Piotr Kulawik^f, Cengiz Gokbulut^g (b), Abderrahmane Aït-Kaddour^h (b) and Fatih Özogulⁱ (b)

[®]Department of Basic Sciences, Cukurova University Faculty of Fisheries, Adana, Turkey; [®]Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Dapoli, Maharashtra State, India; 'Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France; ^eSyrian Academic Expertise (SAE), Gaziantep, Turkey; "Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Karakow, Poland; 'Department of Pharmacology and Toxicology, University of Adana Menderes, Isikli Koyu, Aydin, Turkey; "Faculty of Medicine, Department of Pharmacology, Balikesir University, Cagis Campus, Balikesir, Turkey; ^bUniversité Clermont Auvergne, INRAE, VetAgro Sup, UMRF, Lempdes, France; 'Department of Seafood Processing Technology, Cukurova University Faculty of Fisheries, Adana, Turkey

Contamination of the food and especially marine environment with nano/micro-plastic particles A has raised serious concern in recent years. Environmental pollution and the resulting seafood contamination with microplastic (MP) pose a potential threat to consumers. The absorption rate of the MP by fish is generally considered low, although the bioavailability depends on the physical and chemical properties of the consumed MP. The available safety studies are inconclusive, although there is an indication that prolonged exposure to high levels of orally administered MP can be hazardous for consumers. This review details novel findings about the occurrence of MP, along with its physical and chemical properties, in the marine environment and seafood. The effect of processing on the content of MP in the final product is also reviewed. Additionally, recent findings regarding the impact of exposure of MP on human health are discussed. Finally, gaps in current knowledge are underlined, and the possibilities for future research are indicated in the review. There is an urgent need for further research on the absorption and bioavailability of consumed MP and in vivo studies on chronic exposure. Policymakers should also consider the implementation

KEYWORDS

Analytical methods; food quality; human health; microplastic; seafood

Micro and Nano plastics as an emerging concern for food safety and security

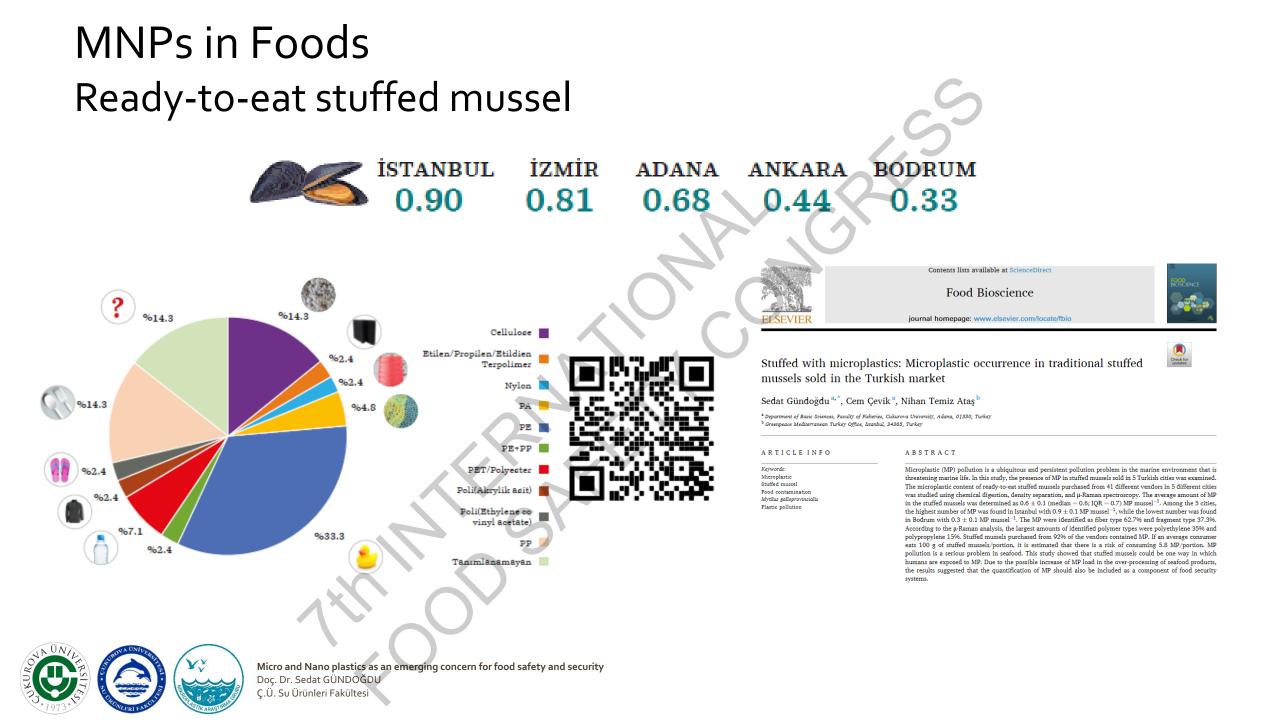
Doç. Dr. Sedat GÜNDOĞDU C.Ü. Su Ürünleri Fakültesi

MNPs in Foods

Fishes

Deniz canlılarınındaki mikroplastik oranları

Occurrence of microplastics in the gastrointestinal tracts of some edible fish species along the Turkish coast


Sedat GÜNDOĞDU^{1,} ⁽, Cem ÇEVİK¹⁽, Nihan TEMİZ ATAŞ²⁽) Department of Basic Sciences, Faculty of Fisheries, Çukurova University, Adana, Turkey ²Greenpeace Mediterranean Turkey Office, İstanbul, Turkey

Received: 30.03.2020 • Accepted/Published Online: 16.06.2020 • Final Version: 13.07.2020

Abstract: Plastics have become an inseparable part of modern life as a consequence of their versatility, low cost, durability, and lightweight. In this study, the presence of microplastics (MPs) in the stomachs and digestive tracts of 243 individuals of leaping mullet (*Chelon saliens* (Risso, 1810)), red mullet (*Mullus barbatus barbatus Linnaeus*, 1758), surmullet (*Mullus surmuletus Linnaeus*, 1758), Mediterranean horse mackerel (*Trachurus mediterraneus* (Steindachner, 1868)), and sand steenbras (*Lithognathus mormyrus* (Linnaeus, 1758)), collected along the Marmara, Aegean, and Mediterranean coasts of Turkey was examined microscopically and through μ-Raman analysis. A total of 283 MP particles were extracted. Among the examined species, the average MP concentration was 1.1 MP per fish (MPs fish⁻¹). The number of MPs detected was 2.5 MPs fish⁻¹ for leaping mullet, 1.1 MPs fish⁻¹ for red mullet, 0.6 MPs fish⁻¹ for sand steenbras, and 0.4 MPs fish⁻¹ for Mediterranean horse mackerel and surmullet. The size of the MPs ranged from 0.028 to 4.909 mm. To determine the polymer types of the MPs, a μ-Raman analysis was conducted. The most frequently detected polymers were polypropylene (26%), polyethylene (21.9%), polyethylene terephthalate/polyester (8.2%), and cellulose (7.5%). The results of this study showed that MP pollution represents an emerging threat to the fish of Turkish marine waters.

Key words: Microplastics, ingestion, Turkish marine waters, plastic pollution

MNPs in Foods Table salts

Sea salt 16-84/kg, lake salt 8-102/kg and rock salt 9-16/kg.

FOOD ADDITIVES & CONTAMINANTS: PART A, 2018 VOL. 35, NO. 5, 1006–1014 https://doi.org/10.1080/19440049.2018.1447694

(R) Check for updates

Contamination of table salts from Turkey with microplastics

Sedat Gündoğdu 💿

Faculty of Fisheries, Department of Basic Sciences, Cukurova University, Adana, Turkey

ABSTRACT

Microplastics (MPs) pollution has become a problem that affects all aquatic, atmospheric and terrestial environments in the world. In this study, we looked into whether MPs in seas and lakes reach consumers through table salt. For this purpose, we obtained 16 brands of table salts from the Turkish market and determined their MPs content with microscopic and Raman spectroscopic examination. According to our results, the MP particle content was 16–84 item/kg in sea salt, 8–102 item/kg in lake salt and 9–16 item/kg in rock salt. The most common plastic polymers were polyethylene (22.9%) and polypropylene (19.2%). When the amounts of MPs and the amount of salt consumed by Turkish consumers per year are considered together, if they consume sea salt, lake salt or rock salt, they consume 249–302, 203–247 or 64–78 items per year, respectively. This is the first time this concerning level of MPs content in table salts in the Turkish market has been reported.

ARTICLE HISTORY

Received 21 December 2017 Accepted 17 February 2018 KEYWORDS Microplastic; table salt; contamination; food security; Turkey

Micro and Nano plastics as an emerging concern for food safety and security

Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi

MNPs in Foods Canned fish(In press at PeerJ)

PeerJ

Manuscript to be reviewed

Microplastic contamination in canned fish sold in Turkey

Sedat Gundogdu ^{Corresp., 1}, Ali Rıza Köşker ²

¹ Faculty of Fisheries/ Department of Basic Science, Cukurova University, Adana, Turkey
² Faculty of Fisheries/Department of Fisheries and Seafood Processing Technology, Cukurova University, Adana, Turkey
Corresponding Author: Sedat Gundogdu
Email address: sgundogdu@cu.edu.tr

The presence of microplastics (MPs) in processed seafood is a growing concern. In this study, 33 different canned fish brands belonging to 7 producers were purchased from the Turkish market and investigated. MPs composition, possible sources, and potential intake were assessed. Light microscopy was used to quantify potential MPs, and micro-Raman microscopy was used to identify the polymer types. The results showed that all the samples had at least one MPs particle, and fragments were the most abundant (57.3%) shapes of MPs. Polyolefin (21.88%) was the most common polymer type. The results showed that packaging and the production processes are the main possible sources of MPs. Human intake estimation risk is relatively lower since canned fish consumption is relatively low. The findings suggest that the risk related to MPs in canned fish should be considered one of the components of food safety management systems.

MNPs in Foods

Fish feeds

The concentration of the plastic particles in fish feeds collected from 11 countries in four continents plus Antarctica can be ranged **zero** to **526.7 items/kg (n=26)**

Microplastic

Aquaculture

Marine pollution

for plastics to enter the seafood chain.

first one to assess the plastic content and composition in commercial fishmeal products. The sampling consisted

of 26 different fishmeal products, originating from 11 countries on four continents and Antarctica, and repre-

senting the vast majority of globally available and traded commercial products. A wide range of plastics content was found, ranging from 0 to 526.7 n kg⁻¹, and a relatively higher plastics content was identified in fishmeal obtained from (hnia (337.543.45, nkg⁻¹) and Morocco (253.2443.4 nkg⁻¹), whereas no plastics was detected in krill meal obtained from Antarctica. The risk assessment based on feed conversion ratio (FCR) showed that the carnivorous fish species (e.g. eel) with a high percentage of dietary fishmeal, have a substantially higher risk for plastic intake, than other species. In conclusion, these results indicate that fishmeal can be an important pathway

Micro and Nano plastics as an emerging concern for food safety and security

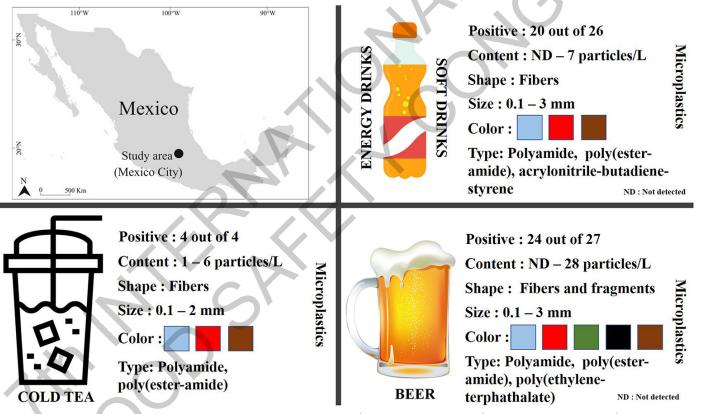
Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi

MNPs in Foods Nori

Between 0.9 and 3.0 pieces/g (dry weight) microplastic was found among 24 commercially packaged nori samples.

Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi

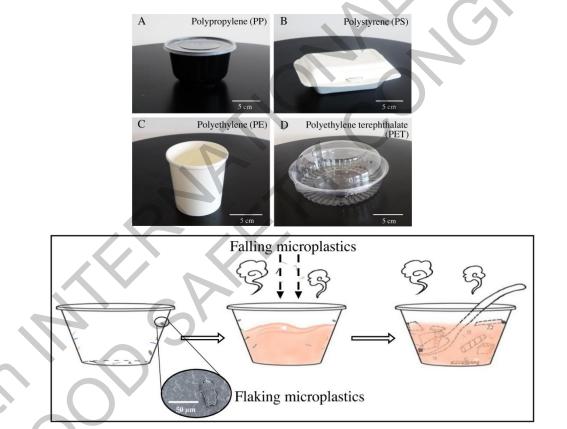
MNPs in Foods


Packaged rice

An estimate of plastic intake through rice consumption for Australians is 3.7 mg (100 g) per serving if rice is unwashed and 2.8 mg if washed. Annual consumption is estimated as 1 g/person.

MNPs in Foods Ice Tea, Energy Drink and Beer

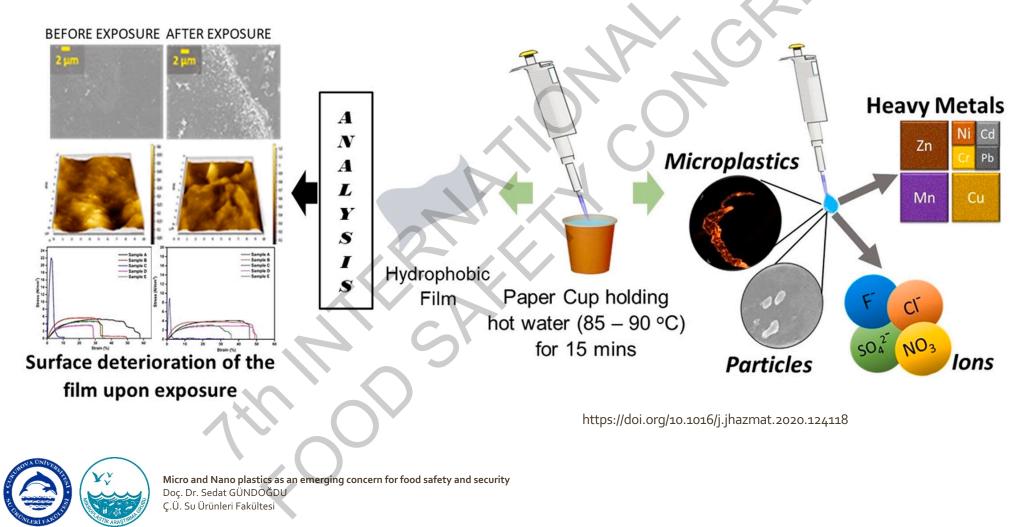
In the analysis on common beverages (n = 57; 27 brands) such as non-alcoholic beverages (n = 19), energy drinks (n = 8), cold tea (n = 4) and beer (n = 57) conducted in Mexico, it has been determined that 48 of 57 includes Microplastics.


https://www.sciencedirect.com/science/article/pii/Soo48969720320969

MNPs in Foods

Paket servis yemek kapları

Microplastics were found in all take-away containers of different types. Microplastic intake from these disposable containers can be 203 items/person/week.

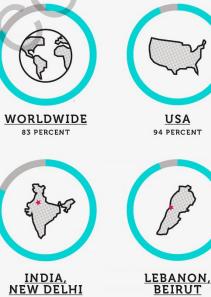

Micro and Nano plastics as an emerging concern for food safety and security

Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi https://doi.org/10.1016/j.jhazmat.2020.122969

MNPs in foods

Single use Paper-like Cups

It has been determined that microplastics migrate to the liquid content from the plastic film on the inner surface of the paper cups exposed to hot water (85-90 °C).



MNPs in Foods Tap and Bottled Waters

	Lot		Average Microplastic Densities (MPP/L)				
Brand		Purchase Location	NR+FTIR confirmed particles (>100 um)	NR tagged particles (6.5-100 um)	Total Average	Minimum	Maximum
Aqua	BB 311019 08:11 PSRL6	Bali, Indonesia	10.5	695	705	1	4713
Aqua	BB 311019 09:50 STB1	Medan, Indonesia	6.93	397	404	0	3722
Aquafina	Oct0719	Amazon.com	14.8	237	252	42	1295
Aquafina	BN7141A04117	Chennai, India	11.6	162	174	2	404
Bisleri	HE.B.No.229 (BM/AS)	Chennai, India	18.0	808	826	39	5230
Bisleri	MU.B.No.298 (MS/AD)	Mumbai, India	8.85	204	213	2	1810
Bisleri	SO.B.No.087 (AS/LB)	New Delhi, India	0.57	3.15	3.72	0	32
Dasani	Oct 0118NHBRB	Amazon.com	14.6	150	165	85	303
Dasani	P18NOV17CG3	Nairobi, Kenya	6.28	68.3	74.6	2	335
E-Pura	17.11.18	Mexico City, Mexico	22.3	664	686	11	2267
E-Pura	14.10.18	Tijuana, Mexico	7.76	12.2	20.0	3	92
E-Pura	09.08.18	Reynosa, Mexico	0.21	37.1	37.3	0	149
Evian	PRD 03 21 2017 14:02	Amazon.com	26.0	171	197	126	256
Evian	PRD 05 24 17 11:29	Fredonia, NY, USA	1.51	56.7	58.2	0	256
Gerolsteiner	07.142018 2	Fredonia, NY, USA	14.8	1396	1410	11	5106
Gerolsteiner	NV No. AC-51-07269	Amazon.com	8.96	195	204	9	516
Minalba	FAB: 211017 09:06SP	Sao Paulo, Brazil	2.56	37.5	40.1	4	199
Minalba	FAB: 160817 15:05SP	Aparecida de Goiania, Braz	5.30	7.19	12.5	0	47
Minalba	FAB: 091217 16:53SP	Rio de Janeiro, Brazil	5.01	145	150	0	863
Nestle Pure Lif	fe 100517 278WF246	Amazon.com	29.8	2247	2277	51	10390
Nestle Pure Lif	fe P: 4/11/17 01:34 AZ	Beirut, Lebanon	11.0	38.2	49.3	6	153
Nestle Pure Lif	€ 730805210A 23:28	Bangkok, Thailand	18.0	450	468	11	3526
San Pellegrino	BBE 11.2018 10	Amazon.com	1.68	28.6	30.3	0	74
Wahaha	20171102 1214JN	Jinan, China	9.10	147	156	30	731
Wahaha	20171021 3214GH	Beijing, China	5.53	61.2	66.7	13	178
Wahaha	20171103 2106WF	Qingdao, China	4.40	62.7	67.1	1	165

Bölgelere göre mikroskobik partiküllerin oranları

82 PERCENT

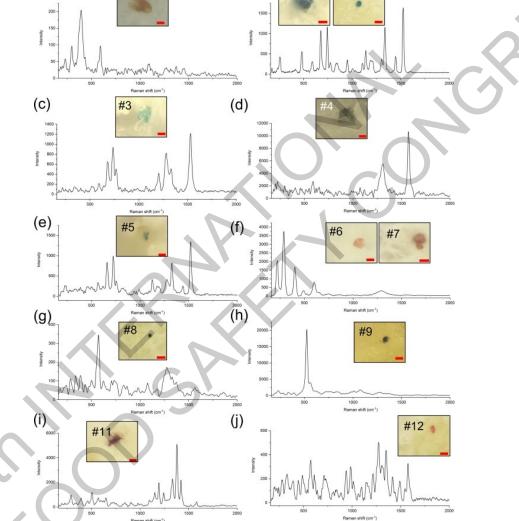
EUROPE

72 PERCENT

2 CAR

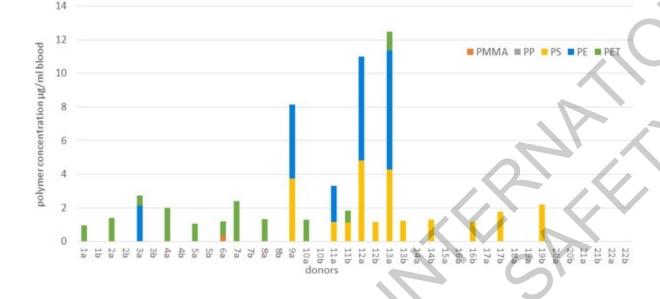
<u>INDONESIA,</u> JAKARTA

75 PERCENT



Micro and Nano plastics as an emerging concern for food safety and security

Doc. Dr. Sedat GÜNDOĞDU C.Ü. Su Ürünleri Fakültesi


The Result!

MNPs in Plasenta: PLASTICENTA

MNPs in Human Blood: *Homo plasticus*

Contents lists available at ScienceDirect

Environment International

journal homepage: www.elsevier.com/locate/envin

Full length article

FLSEVIEF

Discovery and quantification of plastic particle pollution in human blood

Heather A. Leslie ^a, Martin J.M. van Velzen ^a, Sicco H. Brandsma ^a, A. Dick Vethaak ^{a,b}, Juan J. Garcia-Vallejo ^c, Marja H. Lamoree ^{a,*}

^a Dept. of Environment and Health, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands ^b Deltares, Delft, the Netherlands

ABSTRACT

^c Cancer Center Amsterdam and Amsterdam Infection and Immunity, Amsterdam University Medical Center (VUmc location), De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands

ARTICLEINFO

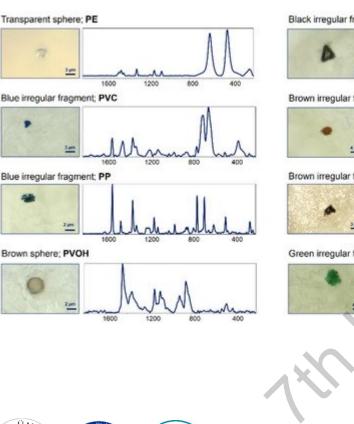
Handling Editor: Adrian Covaci Keywords: Nanoplastic Microplastic Human whole blood Polymers Pyrolysis-GC/MS Plastic particles are ubiquitous pollutants in the living environment and food chain but no study to date has reported on the internal exposure of plastic particles in human blood. This study's goal was to develop a robust and sensitive sampling and analytical method with double shot pyrolysis - gas chromatography/mass spectrometry and apply it to measure plastic particles ≥700 nm in human whole blood from 22 healthy volunteers. Four high production volume polymers applied in plastic were identified and quantified for the first time in blood. Polyethylene terephthalate, polyethylene and polymers of styrene (a sum parameter of polystyrene, expanded polystyrene, acetonitrile butdiene styrene etc.) were the most widely encountered, followed by poly (methyl methacrylate). Polypropylene was analysed but values were under the limits of quantification. In this study of a small set of donors, the mean of the sum quantifiable concentration of plastic particles in blood was 1.6 µg/ml, showing a first measurement of the mass concentration of the polymeric component of plastic in human blood. This pioneering human biomonitoring study demonstrated that plastic particles are bioavailable for uptake into the human bloodstream. An understanding of the exposure of these substances in humans and the associated hazard of such exposure is needed to determine whether or not plastic particle exposure is a public health risk.

Micro and Nano plastics as an emerging concern for food safety and security

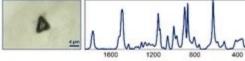
Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi

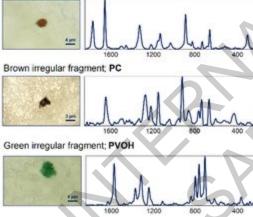
MNPs in Adult and Baby Stool!

ECOTOXICOLOGY AND PU... **RETURN TO ISSUE** < PREV NEXT >


Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces

Junjie Zhang, Lei Wang, Leonardo Trasande, and Kurunthachalam Kannan*




MNPs in Human Breastmilk!

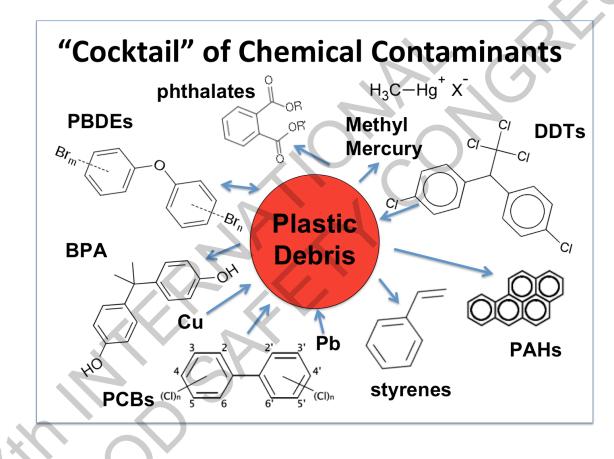
Black irregular fragment; PEMA

Brown irregular fragment; PES

Article

Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk

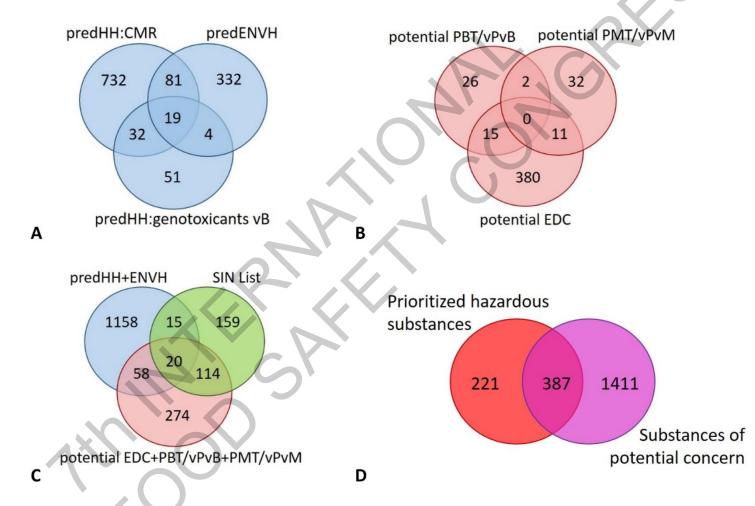
Antonio Ragusa ¹, Valentina Notarstefano ²,*¹, Alessandro Svelato ³, Alessia Belloni ², Giorgia Gioacchini ², Christine Blondeel ³, Emma Zucchelli ³, Caterina De Luca ³, Sara D'Avino ³, Alessandra Gulotta ⁴, Oliana Carnevali ² and Elisabetta Giorgini ²


- ¹ Department of Obstetrics and Gynecology, Università Campus Bio Medico di Roma, Via Alvaro del Portillo, 200, 00128 Roma, Italy; antonio.ragusa@gmail.com
- ² Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; a.belloni@pm.univpm.it (A.B.); giorgia.gioacchini@univpm.it (G.G.); o.carnevali@univpm.it (O.C.); e.giorgini@univpm.it (E.G.)
- ³ Department of Obstetrics and Gynecology, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Via di Ponte Quattro Capi, 39, 00186 Roma, Italy; alessandrosvelato@virgilio.it (A.S.); christineblondeel@yahoo.fr (C.B.); emmazucchelli16@gmail.com (E.Z.); deluca.caterina33@gmail.com (C.D.L.); saradavino@libero.it (S.D.)
- ⁴ Department of Obstetrics and Gynecology, Università degli Studi di Sassari, Viale S. Pietro, 07100 Sassari, Italy; alessandragulotta87@gmail.com
- * Correspondence: v.notarstefano@univpm.it; Tel.: +39-0712204723

Micro and Nano plastics as an emerging concern for food safety and security

Doç. Dr. Sedat GÜNDOĞDU C.Ü. Su Ürünleri Fakültesi

Do you think that the problem is only limited with physically?



Micro and Nano plastics as an emerging concern for food safety and security Doc. Dr. Sedat GÜNDOĞDU

Ç.Ü. Su Ürünleri Fakültesi

Do you think that the problem is only limited with physically?

Legal Regulations

Food contact materials are regulated according to the general safety principles in EU regulations (EC) No. 1935/2004 and (EC) No. 2023/2006 (European Commission 2004, 2006). In addition to the general legislation, there are specific European Union measures for some food contact materials such as plastic materials (including recycled), ceramics, regenerated cellulose films, active and smart materials, and some substances such as BPA, epoxy derivatives and nitrosamines (EFSA 2020).).

With so much evidence, what is the policy makers' approach to MNPs?

Reports published by EFSA, the United Nations Food and Agriculture Organization (FAO), the Science Recommendation for Policy by the European Academies (SAPEA) and the Norwegian Food and Environmental Science Committee (VKM) consider that there is insufficient data to assess the risk of microplastics to human health.

Legal Regulations

The European Green Deal (EGD), the new Circular Economy Action Plan (CEAP) and the EU Plastics Strategy announces measures to tackle pollution from microplastics intentionally added to products (e.g. cosmetics, detergents, paints) and those that are unintentionally released (e.g. tires and synthetic textiles). The EU Action Plan 'Towards Zero Pollution to Air, Water and Soil' states that by 2030 the EU must reduce plastic litter in the seas by 50% and microplastics by 30%.

	CALL FOR EVIDENCE FOR AN IMPACT ASSESSMENT			
This document aims to inform the public and stakeholders on the Commission's future legislative work so they can provide feedback on the Commission's understanding of the problem and possible solutions, and give us any relevant information that they may have, including on possible impacts of the different options.				
TITLE OF THE INITIATIVE	Measures aiming to reduce the presence in the environment of unintentionally released microplastics from tyres, textiles and plastic pellets			
LEAD DG (RESPONSIBLE UNIT)	DG ENV, UNIT B 1 SUSTAINABLE PRODUCTION, PRODUCTS & CONSUMPTION DG GROW, UNIT G 1 TOURISM, TEXTILES DG GROW, UNIT 12 MOBILITY DG GROW, UNIT 13 GREEN AND CIRCULAR ECONOMY			
LIKELY TYPE OF INITIATIVE	Legislative initiative			
INDICATIVE TIMETABLE	adoption Q4 2022			
ADDITIONAL INFORMATION	INFORMATION Microplastics (europa.eu)			
	purposes only. It does not prejudge the final decision of the Commission on whether this s final content. All elements of the initiative described including its timing are subject to			

Micro and Nano plastics as an emerging concern for food safety and security

Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi

Legal Regulations

- Limiting intentionally added microplastics and pellets, taking into account the ECHA opinion;

 Develop labeling, standardization, certification and regulatory measures for the unintentional release of microplastics, including increasing the capture of microplastics at all relevant stages of the product lifecycle;
To further develop and harmonize methods for measuring microplastics unintentionally released, particularly from tires and textiles, and to provide harmonized data on microplastic concentrations in seawater.

Peki ne yapalım?

🔒 📋 LETTER

f 🎐 in 🤠 🍫 🖾

A global plastic treaty must cap production

MELANIE BERGMANN, BETHANIE CARNEY ALMROTH, SUSANNE M. BRANDER, TRIDIBESH DEY, DANNIELLE S. GREEN, SEDAT GUNDOGDU, ANJA KRIEGER, MARTIN WAGNER,

AND TONY R. WALKER Authors Info & Affiliations

THANKS

www.mikroplastik.org twitter: @Sedat_Gundogdu1 instagram: @sedatgundogduuu

Gida Güvenliği ve Güvencesi Açısından Ortaya Çıkan Bir Endişe Olarak Mikro ve Nano Plastikler Doç. Dr. Sedat GÜNDOĞDU Ç.Ü. Su Ürünleri Fakültesi